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Confocal surfaces and integrable billiards on the 
sphere and in the Lobachevsky space 

ALEXANDER P. VESELOV 

Moscow State University 
Mech.-Math, Department 

119899 Moscow 
USSR 

A b s t r a c t .  Billiard problems for the domains on the sphere and hyperbolic space 
bounded by the corresponding conical sections are investigated. It is shown that 
these discrete systems are integrable and correspond to the translations on the 
Jacobi varieties of  certain hyperelliptic curves. The explicit formulas in terms 
of  O-functions are exhibited. The consideration is based on the factorization me- 
thod, developed recently by J. Moser and the author. 

INTRODUCTION 

It  is a wel l -known geometr ical  fact that  the tangent  line to  the geodesic on 

the ell ipsoid in eucl idean space is touching the set o f  confocal  quadrics which 

is f ixed for a given geodesic (see, for  example  [ 1 ]). In the l imit  when the length 

o f  one o f  the axes tends  to zero we have a bill iard problem in the  domain  bound-  

ed by the el l ipsoid o f  one less dimension.  It means tha t  the  bi l l iard 's  t ra jector ies  

possess the same geometr ical  p roper ty ,  which leads to  the number  o f  the involu- 

tive integrals sufficient  for  the comple~te in tegrabi l i ty  in Liuoville sense (see 

[2, 31). 

Nevertheless,  it  seems to be diff icult  to use this l imi t  p rocedure  for the inte- 

grat ion of  the  bi l l iard 's  dynamics  beca~ase of  the  singular nature  of  this l imit .  

In the recent- paper  [4] J. Moser and the au thor  proposed  the me thod  for  
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the integration of discrete systems and applied it to some discrete versions of the 

classical integrable systems. In particular, the ellipsoidal billiard dynamics can 

be explicitly described by using this technique, which is based on the facto- 

rizations of the matrix polynomials [4]. 

It  turns out that the methods o f  [4] are applicable to certain billiard problems 

in the domains in the sphere and in the Lobachevsky space which can be conside- 

red as natural generalizations of  the euclidean eUipsoidal domains. 

The aim of this paper is to explain how these problems can be integrated 

by using the factorization procedure. The related geometrical and mechanical 

problems in Lobachevsky space are also discussed. 

In § 1 the surfaces in the sphere and in the Lobachevsky space, which are 

the analogues of  the euclidean ellipsoids are defined. In the case of  the sphere 

these surfaces, which are called the sphere-conical sections or the spherical conics, 

are the subject of geometrical investigations, originating with Chasles (see [ l ,  5]). 

These surfaces are defined as the intersections of  the sphere and the cone where 

the vertex is at the center of the sphere. The coordinates, connecting with the 

appropriately defined confocal family, were used by C. Neumann in 1859 for the 

integration of the system, describing the motion of  the mass point on the sphere 

under the influence of the force with the quadratic potential [6]. 

The hyperbolic case does not seem to have been discussed in the literature 

although the definition is quite similar. Instead of the sphere one can consider 

the hyperboloid in the pseudoeuclidean space ~n,1 one sheet of which, with 

the induced metric, is the well-known model of the Lobachevsky space. The 

suitable cone intersects this sheet in a compact closed surface, which we call 

the H-ellipsoid. We show that the naturally defined confocal family of H-conical 

sections possesses all geometrical properties of  the euclidean and spherical one. 

It is not completely obvious because of the reality conditions. 

In §2 the factorization method [4] is explained and applied for the integra- 

tion of the billiard problem in the domain on the sphere and the Lobachevsky 

space bounded by conical sections. As a consequence we show that these dyna- 

mical systems correspond to the translation on the Jacobi varieties of  the certain 

hyperelliptic curves and give the explicit formulas for the general solutions in 

terms of 0-functions. In § 4 we discuss some geometrical corollaries. 

In the Appendices the hyperbolic analogues of  two classical integrable systems 

are considered. Appendix A is devoted to the geodesic flow on the H-ellipsoid in 

Lobachevsky space. We present the Lax representation with the spectral para- 

meter of the dynamics. This representation is crucial for the integrability. In the 

euclidean case such representation is the consequence of Moser's results [6]. 

In Appendix B we consider the hyperbolic version of C. Neumann's system, 

which can be viewed as the anisotropic harmonic oscillator in the Lobachevsky 
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space. We give the interpretation of the motion in terms of the eigenfunctions 

of  the finite-gap Schr6dinger operators 

d 2 
L = - -  - -  + u(t).  

dt  2 

This result is the hyperbolic generalization of  the Moser-Trubowitz discovery 

(see [2, 7-9]). As a consequence the 0-functional formulas for the solutions are 

given. 

This work was completed while the author was visiting the Forschungsinstitut 

for Mathematik, ETH-Zentrum, Ziirich. I would like to thank Prof. J. Moser for 

his kind hospitality and for the stimulating atmosphere which he provided. 

I am also thankful to J. Langer and R. Perline for the stimulating discussions and 

M. Levi for the helping in the preparation of this manuscript. 

1. CONFOCAL FAMILIES IN THE SPHERE AND LOBACHEVSKY SPACE 

We will consider the real (n + 1)-dimensional vector space V with Symmetric 

bilinear form 

(1) (x, y)  =J0x0Y0 + J l x l Y l  + . . .  +JnXnYn 

which will be supposed to be nondegenerate. Such form determines the isomor- 

phism J "  V ~ V* of V and the dual space V* by the formula 

(2) (x, y )  = (x, J y )  = (x, y *) 

where the right hand side is the value of  the linear function 3' * = JY ~ V* at 

the point x E V. 

Actually only two cases will be of  interest: J0 = J 1  = " "  = ' In  = 1 and 

J o  = - -  l ,  J 1  = J 2  = " " " = J n  = 1 corresponding to the euclidean space 
V = ~n + 1 and to the (n + 1)-dimensional Minkovski space V = ~n,1 . 

In the last case the equation 

(3) ( x , x ) = - - x  2 + x ~  + . . . + x 2 n  = - - 1  

determines a two-sheeted hyperboloki. 

One sheet of  that hyperboloid with the induced metric which is positive 

definite is the well-known model of the n-dimensional Lobavhevsky space H. 

The straight lines or geodesic in this model are the sections of  the hyperboloid 

by the planes passing through the origin in IR n' 1 (see, for example, [ t0]). 

In the euclidean case we have the Unit sphere 

(4) (x, x)  = x 0  2 + . . .  + x n  2 = 1 
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which is after the identification of x with - x the model of elliptic or spherical 

geometry. The reason for the identification is that any two straight lines, which 

are now the great circles, should have no more than One common point. 

The following definition is possible in any pseudoeuclidean space V (compare 

with [10, 1 1]). Any quadric Q in V can be represented as 

(5) Q(x)  = (x, A x )  

for some selfadjoint operator A : V ~ V: 

(Ax ,  y )  = <x, A y ) .  

DEFINITION. The pencil of quadric Qx in V is called pseudoeuclidean if it has 

a form 

(6) Qx(x) = Q(x)  + X (x, x )  = ((A + XI)  x,  x) .  

The dual family 

Qh(x) = ((A + ~,I)- 1 x, X) 

and the corresponding family of conics 

(7) ((A + ~k/)- 1 x, x> = 0 

is called confocal. • 

In the euclidean case the intersections of these cones with the unit sphere 

form the family of the spherical conics (S-conics), which we also will call confo- 

cal. These surfaces form an orthogonal family and correspond to the orthogonal 

coordinate system on the sphere ("Elliptische Kugel Koordinaten').  These coor- 

dinates are defined as the roots X 1 . . . .  , X n of the equation 

(8) Qh(X ) = ((A + ~kI)- 1 X, X) = 0. 

They were used by C. Neumann [6] for the integration of the mechanical 

system o n  the sphere with the quadratic potential U(x) = a (x, A x ) .  He has 

shown that in these coordinates the separation of variables in the corresponding 

Hamilton-Jacobi equation takes place. 

Figure 1 shows the projection of the confocal family for the sphere S 2 CIR 3 

onto the XoX 2 plane. The initial S-ellipse is defined by the equation 

4 + =0 
a 0 a 1 a 2 

w i t h a  0 > a 1 > 0 > a 2, The focicorrespond to the degenerate c a s e X - a  1 of 

the confocal curves 
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F°. t 

F+ + 

j'/ 

F+. 

Fig. 1 

4 
~ +  ~ + ~ = 0  

a 0 - X a 1 - X a 2 - X 

and have the coordinates 

(a 0" _+ - -  , 0 , _ +  _ m  

a 2 -- a 2 

To the author ' s  knowledge the hyperbolic  case has no t  been discussed in the 

li terature, therefore we consider it  in more detail. 

First of all the ope ra to rA,  determining the quadric Q(x) = (x, Ax )  forpseudo- 

euclidean space V, generally can not  be diagonalized in the real. But in the case 

when the equat ion 

(9) Q(x) = (x, A -  i x )  = 0 

determines the compact  closed surface M n in H the operator A are diagonali- 

zable, as follows from the following result. 

PROPOSITION 1. Suppose that all points o f  the cone (9) satisfy the inequality 

(x, x)  < O, which corresponds to the geometrical situation depicted in figure 2. 

Then the operator A -  1 (and therefore A)  is diagonal in some orthogonal coor- 

dinate system. 
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X n 

{A ' !  x, x) ---- 0 

) 

Xo 

1 

Fig. 2 

Proof .  Let us consider the funct ion 

( A -  1x, x )  
f ( x  ) - 

(x, x )  

This funct ion vanishes on the surface M n  and has a maximum or minimum 

at some point  x 0 of  the domain bounded  by M n because o f  the compactness 

M n . In this point  we have f ' ( x  o ) = 0 or 

O t -  lXo, X o) 
(10) A -  ix  0 = k0x0,  ~0 = 

(x 0, x0) 

It means that  x 0 is the eigenvector o f  the operator A - 1 .  In the orthogonal  

hyperspace W = {x E V : (x, x 0) = 0} we have again two quadratic forms, which 

are the restrictions o f  0 (x )  and (x, x). But now the second form is positive and 

one can use the well-known theorem o f  linear algebra to finish the proof.  • 

This result is the reason for the following definition. 

DEFINITION. The compact  surface M n in the Lobachevsky space is called an 

H-el l ipso id  if in some orthogonal  coordinate system in ~ n ,  1 it is determined by 

the equat ion 
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X 2 X~ 
~l l> + + + .  0 

a o a 1 a n 

with a o > a  1 ~ a 2 ~ . . . > l a  n > O .  

In the Klein model with the coordinates 

X i 
~ l = - -  ( i  1 , . . . , n )  

x o 

an H-ellipsoid has the usual equation 

- -  + ~  + . . . + ~  = I  
b 1 b 2 b n 

for b i = a i / a  o ~ 1. 

The corresponding confocal family by the definition is as determined by 

2 
x0 ~ x~ ~. 

(13) + + . . . +  ~ = 0 .  
a o - ot a I -- ot a n - -  ot 

For the general point x E H there exist precisely n H-conical sections, passing 

through x as follow from 

PROPOSITION 2 F o r  g i v e n  x E F ,  n ,1  w i t h  ( x ,  x )  = - -  1 a n d  X o X  1 . . . x n 4= 0 

t h e  e q u a t i o n  ( 1 3 )  h a s  n r e a l  r o o t s  s a t i s f y i n g  t h e  i n e q u a l i t i e s  

JiS 
*.! . , I  I ~ . - 1 )  . .  

I . 

1 1 1 ,  ' i[ 
a~/ I e 

I 
! 

I 

Gt 

Fig. 3 
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(~I +() < 1  

~2 

Fig. 4 

an <an <an-1 <an-1 < ' ' ' < a l  <al" 

Proof. The graph of  the left-hand side £(a) o f  equation (13) has the form, 

shown in the figure 3. 

We use the fact that  at infinity 

(x, x)  1 
I a I -~  o o ,  ~ ( a )  = - - .  

a a 

Now the proposit ion follows by continui ty arguments_ 

The roots  a 1 . . . . .  a n correspond to different types o f  the H-conical sections, 

in particular a n corresponds to H-ellipsoid passing through x. 

Figure 4 shows the confocal  family in the Klein model o f  the Lobachevsky 

plane. 
The curves are the usual euclidean ellipses and hyperbolas,  determined by 

(14) - -  -~ - 1, 

/ / 
a 0 - a l  ~a 0 - a l  

for a = 0 we have the initial H-ellipse (12). 
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The foci  F± correspond to a = a 2 

av~  ° - a 2 ~1  = +  _ - -  , ~ 2 = 0 .  

a 2 

The focal p rope r ty  o f  these poin ts  will fol low f rom our  results (see § 4). 

This  family  is or thogonal  wi th  respect  to the  Lobachevsky  metr ic  (but  not  

the  euclidean one). This fact  can be proven in the  same way as for  the  eucl idean 

and spherical  cases. F o r  the comple teness  we give here the  p roo f  fol lowing Moser 's  

a rguments  [7]. 

PROPOSITION 3. The con f o c a l  sur faces  ( 1 3 )  passing through the  p o i n t  

x E ~ n , 1  : (x,  x )  = - -  1, XoX 1 . . .  x n ~ O, are or thogona l  w i th  r e spec t  to the  m e -  

tric ( , )  or equ iva len t l y  the  L o b a c h e v s k y  metr ic .  

Proof .  We prove tha t  the  normals  to  these surfaces coincide with eigenvectors  

o f  the  selfadjoint  ope ra to r  

M = M x = P x A P  

where  Px = I + x ® x *  is the p ro jec to r  on the or thogonal  complemen t  o f x  (com- 

pare  with [7]). One can check tha t  

det (M x - a I )  = a det  (A - od) (x, .  (A - a ) -  Ix ) ,  

which means tha t  the  eigenvalues of  M x are a o = 0 and a I , . . .  , a n , the  la t te r  

being the roo ts  o f  (13), i.e. the  confocal  coord ian tes  of  x. The cor responding  

eigenvectors  are v 0 = x and v i = (A - a i ) -  1 x ,  i -- l , . . . ,  n. Indeed 

( M - c ~ ) o  i = ( I x A I x  - a  i) o i = t x (  A - a  t) P x o i = P x = O .  

We use here tha t  PxVi = vi, which fo l lows f rom the  o r thogona l i ty  x and vi: 

(v r x )  = ( A  - % ) -  a x , x )  = O: 

But the vectors  (A - co l ) - i x  are the normals  to  the  corresponding confocal  

surfaces. The propos i t ion  now fol lows f rom the  o r thogona l i ty  of  the eigen- 

vec tors  of  the selfadjoint  opera tor .  • 

Ano the r  way to prove this resul ts  is to  calculate the metr ic  tensor  (is 2 in 

the  coord ina tes  a 1 . . . .  , an. It can be done  in the  same way as for  the  sphere 

[2] and leads to the  answer 

n 

/=1 
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g j (a )  = 
1 p'(aj) 

4 q ( ~ )  

where 

P! n 

p ( Z ) =  I -]  (Z--Oti) , q ( z ) =  [ ~  ( z - - a i ) .  
i= 1 i= 0 

One can check that this formula implies the separation of variables for the 

Hamilton-Jacobi equation in these coordinates for the Hamiltonian functions 

H =  1 / 2 p  2 a n d H =  1 / 2 p  2 + l~(Ax ,  x ) , c o r r e s p o n d i n g t o t h e g e o d e s i c f l o w  on 

the Lobachevsky space and the hyperbolic analogue of C. Neumann's system. 

The last system, which can be viewed as an anisotropic harmonic oscillator 

in Lobache~sky space, is discussed in Appendix B. 

2. THE H-ELLIPSOIDAL BILLIARD PROBLEM AND THE FACTORIZATIONS 

OF THE MATRIX POLYNOMIALS 

In the paper [4] J. Moser and the author proposed the method for integration 

of  discrete systems based on the factorization problem for the matrix polynomials. 

The idea can be explained in the example of  the finite Toda lattice, which is 

connected with QR-algorithm as was discovered by W. Symes [ 12]. 

Recall this algorithm for finding the eivenvalues of  the matrix [13]. The first 

step consists in the factorization of the given matrix A = A 1 

A 1 = QIR1  

where Q1 and R 1 are the orthogonal and uppertriangular matrices correspondin- 

gly. If  we suppose that A is nondegenerate and the diagonal elements of  R 
1 

are positive, then such factorization is unique and given by the well-known 

Gram-Schmidt procedure. 

On the second step we consider the new matrix 

A 2 = R 1 Q  1 

and its factorization 

A 2 = Q2R2 . 

Iterating this procedure we come to the sequence of matrices A 1 ,A2, . . ,  which 

are similar: R Q  = Q -  1 (QR)Q. Under certain assumptions, for example, for sym- 

metric matrices with different eigenvalues, this sequence has a limit, which is the 

diagonal form of the matrix A = A 1 " 
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W. Symes proved that for a special initial matrix A this procedure corresponds 

to the Toda flow for integer time (see [12]). As was shown in [4] if we start 

from a certain quadratic matrix polynomial LQ,) 

and its factorization of the form 

L(A) = (b 0 + b I X) (c o + c I X) = B(X) C(X), 

then the analogous procedure 

L(X) ~ L'(X) = C(X) B0,) = C(X) L(X) C -  1 (X) 

corresponds to the dynamics of the discrete versions of  some classical integrable 

systems, in particular, the billiard dynamics in the ellipsoidal domain of  the 

euclidean space. 

Now we show that  this method is working also in the Lobachevsky space (the 

case of  the sphere can be considered in the same way). 

Let x, y and z be the successive reflection points in the H-billiard ~ 11:): 

(A-  Ix, x)  = C4- iv,  y) = (A-  lz, z) = 0. 

In the projective Klein model we have the straight lines xy  and yz, which are 

in one plane with the normal N to the Hellipsoid (12) and form with N the 

angles, which are equal in the Lobachevsky metric (see fig. 5). 

The main point of the factorization method is to find the corresponding 

matrix polynomial L(X). In our case L(X) turns out to be linear (!) :  

Z 

Fig. 5 
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(15) L(X) = A + ~(x ® y*  - y ®x*). 

This choice of  L(~) is motivated by Moser's results [7]. 

Let 's introduce the notations: the bivector 

(16) x ^ y : = x ® y * - y ® x *  

is the skew symmetric operator in V = ~n ,  1. The value 

(17) [x ^ y [ 2  : = ( x , y ) 2  - ( x , x ) ( y ,  y) 

is the area of  the parallelogram generated by x and y in V. 

Now we can start. Consider the factorization of  L(X) (I 5) of  the type 

(18 )  L(~)  = A  + ~x ^ y = (D + Xr~ ®~*)  (D - X~ ®7") .  

We have the relations 

t D = A  

(19) I t / ^  D~ = x  ^ y 
I 

= 0 .  

LEMMA. The solutions o f  (19) after some transformation ~ -~ ~ ,  rl -~ ~-1~1 

have two possible forms: 

~ = D - l y ,  r~ = x  + 3 y  (2O) 

or  

(21) ~ = D - l x ,  ~ = - - y  +3x  

with D = x / ~  and artitrary 3. 

Proof. The second equation of (19) says the vectors D~ and ~ generate the same 

plane 11 as x and y. The third equation determines the cone which intersects 

with this plane in two lines, corresponding to (20) and (21). Indeed, 

(~, ~) = ( D -  lx ,  D -  i x )  = ( Z -  Ix,  x )  = 0. 

It proves the lemma. 

Two types of  solutions, (20) and (21), correspond to two  possible splittings 

of  the roots of  the scalar polynomial P(?0 = det L00:  

(22) E = Z1 u Z 2 

where G, E 1 and G 2 are the sets o f  roots of the determinants of  L(X), the first 

and second factors correspondently (compare with [4 ]) 
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In our case 

(23) P(~) = det(A + kx A y)  = de tA(1  - ~2 CA- ix, y)2)  

and we have two possibilities 

Y+I = - ( A - l x , y ) - I ,  ~2 = + ( A - I x ' y ) - 1  (24) 

and 

( 2 5 )  1~1 = ( A -  1X, y ) -  1, •2 = - -  C A -  1x,  y ) -  1, 

which correspond to (20) and (21) respectively. 

Indeed ,  for ~ and ~/given by (20), for instance, we have 

d e t ( D - ) , ~ ® r / * )  = de tD(1  - ~ < D  - 1  ~,r/)) = 

= det D(1 - ~ CA- ix, y)). 

Now we make a choice, which corresponds to the direction of  the mot ion 

from x to  y, fixing the splitting (24). 

For  convenience we choose the corresponding ~ and +7 in (20) in a such way, 

that  t / is  or thogonal  to y,  i.e. 

(x, y )  
(26) fl - 

(y, y)  

Changing the order o f  the factors in (24) we come to  

(27) L'(X) = (D - X~ ® 77*) (D + Xr/® ~*-) = 

= A  +XDr /A ~ - ~  2 (n, r/) ~ ®~*. 

We see that  the first step changed the degree of  the matrix polynomial  L. 

Make one more  step: 

(28) L'(X) = (D + X~ ® ~'*) (D - X~ ® ~*) = 

= A + ?t~ ^ D ~  - X2 (~', ~') ~ ® ~*. 

The comparison of  (27) and (28) leads to 

t (~', ~') = iT, 7 )  

(29) IDa" + D r / =  v~. 

The last equation can be rewritten as 

(30) ~" + r / =  vD- 1 ~ = vA- 1 y. 

Together  with the first equation it leads to two solutions 
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and 

2 (r/0A- ly )  
(31) ~ = - - ~ 7 + v A - l  y ,  v =  

( A -  l y , A -  ly )  

One can easily check that only the second possitility corresponds to our 

splitting (24) and to the direction of the billiard particle after the reflection 

in the point y (see fig. 5). 

To finish the step let us find 

(32) L"(X) = (D - X~" ® ~*) (D + X~ e ~'*) = A + XD~ ^ ~" = A + Xy ^ ~', 

where z = ~ + "yy E M n is uniquely determined by the equation 

(A-  I f ,  ~) 
(33) ( A -  lz,  z)  = 0 : 'y = 

(A-  ly, ~) 

Thus after two steps our procedure leads to the transformation L(X) ~ L"(X), 

which corresponds to the billiard dynamics (x, y)  ~ (y, z) • 

Notice that the vector z determined by (33) satisfies the relation 

ly^zl2 =Ix^y[  2 
It determines the correct normalization for the vector in the projective model 

of  the Lobachevsky space. 

We summarize the results of this section in the following theorem. 

THEOREM 1. Le t  {Xk} be an orbit in the billiard problem in the H-ellipsoidal 

domain o f  Lobachevsky  space, which in projective representation in 11 n ' l ,  

de termined by the equation (Ax,  x )  <. O. Choose the vectors x k in a such way  

that I xk ^ xk + 112 = const  Then the matrix 

L k = A  +XXk_ 1 A x  k 

undergoes the isospectral transformation 

(34) Lk + 1 = A k L k A -  k 1 

where 

(35) A k = A - X(~k ® X~ + X k ® rl~), 

~k and ~k are tangent vectors to the trajectory at the reflection point  x k (see 

fig. 5)  and are def ined by the formula (26). Moreover, Lk + 1 is the result o f  

two steps o f  the factorization procedure, described before and applied to L k. 



CON'FOCAL SURFACES AND INTEGRABLE BILLIARDS ON THE SPHERE... 95 

The relations (34), (35) follow from the previous considerations but can be 

checked also by the straightforward calculation. 

COROLLARY. The H-ellipsoidal billiard problem has the following integrals 

(36) F] = ~_, JiJ](xi)'i - x/)'i)2 (]  = O, 1 . . . . .  n) 

i , ]  A] - A i 

which satisfy the unique relation 

F 0 + F  1 + . . . + F  n = 0 .  

Recall that  for ~n ,1 ,  J0 = --  1, J1 = ~ = • • " = Jn" 
The corollary follows from the theorem l and the formula 

det (L - / a / )  = det (A - U/) (1 - X2~u(x, y) ) ,  (37) 

where 

(38) ~ (x, ),) = ((A - lal)-  1 x, ),)2 _ 

((A - / , t / ' ) -  l x ,  X) ( ( A  - I . t I ) -  1 ),, y ) = £ 
F, 

~:o A~-~ 

One can show using [2, 7] that these integrals are in involution with respect 

to  the natural symplectic structure, which can be defined in the hyperbolic case 

in the same way as for the euclidean case (see for example [3]). Therefore,  this 

billiard problem is integrable in Liouville sense [3] and corresponds to the trans- 

lations on the Liouville tori. In the next section we make the last sentence more 

precise. 

3. HYPERELLIPTIC CURVES AND 0-FUNCTIONS 

We show now how one can use the results o f  the previous section for the 

explicit integration o f  the billiard dynamics in an Hell ipsoidal  domain. We will 

follow the algebrogeometrical method of  finite-gap" integration, which for 

the  matrix systems was developed by Dubrovin (see [ 14, 15]). 

Let us consider the spectral curve 1", determined by the equation 

(39) det (L(X) - / z / )  = det (A + Xx ^ y - / t ] )  = 0. 

By using (37), (38) one can rewrite i't as 

(40) P ( # ) - -  X2 I x A ), I 2 q (g )  = 0 
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with 

p ( / a )  = ( p  - a i )  , q ( # )  = (/~ - / a i )  , / 1 i , . . . ,  ttn 
i= 0 i= 1 

are the roots  of  Qu (x, y) :  

n 

(41) E F k ( x ' ' v ) - 0 .  

k = O  a k - -  I a 

L e t A o  . . . . .  A n be the points o f P w i t h X = 0 a n d t a = a  0 , . . . , # = a  n corre- 
spondently,  P± be the "infinities":/a ~ __. X [ x ^ y [, X ~ oo. 

The eigenvector C of  L(X): 

(42) (L(X) - / a I )  C(X,/a) = 0 

ncrmalized by the condi t ion 

(43) C ° + . . . + C  n = 1 

is the meromorphic  vector-function on P with pole-divisor ~ o f  degree (n + 1) + 

+ g - 1 = 2n - 1, where g = (n - 1) is the genus o f  P (see [ 14, 15]). 

The meromorphic  functions with the pole-divisor ~< ~ form the vector space 

L ( ~ )  o f  the dimension (n + 1) for the general ~ .  The coordinates C 0 . . . . .  ~k n 

form the basis o f  L ( ~  ), uniquely determined by the condit ions 

(44) t~i(Ai) = 8ij 

which follow from (42), (43). 

The knowledge of  C.(X, ta) allows to reconstruct  the bivector x ^ y by the 

formula 

(45) X A y = a C ( P + ) A  C(P ), 

is determined from I x  ^ y [ =  c. Indeed, for large X the eigenfunction C is 

close to the eigenfunctions of  the matrix x A y: (x A y)  ¢ = V~ for the nonzero 

eigenvalues u = + I x  A y [. Choose the basis e 1, e 2 in the plane Mxy in such 

a way that  (e 1, e 1) = 1, (e 2, e 2 ) = --  1, (e l, e 2 } = 0. Then the eigenvectors 
~b±, corresponding to v = +[ x A y [ are given by 

~± = e  I -+e 2. 

It leads to  the formula (45). 

Let us now return to theorem 1. As follows from (34), (35) the eigenvector 

Ok+ 1 ° f L k +  1 can be expressed through ~k by the formula 
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(46) 0k+ 1 = Ak Ok = (A - X([ k ®x~ + x k ®rl~)) O k. 

We see that O k + 1 has two new poles in P+ and P O, = oo) and the new double 

zero in the point Q+, corresponding to 

la = O, ~. = (X, A -  l y ) -  1 = ( x  k _ 1' A -  1 X k ) -  1 (see (23)). Indeed, 

de tA k = detA(1 -- X (Xk_ 1, A - I  xk )) 2, 

which follows immediately from the factorization procedure. 

It means that the pole-divisor ~ k +  1 of the vector function Ok+ 1 differs 

from ~ k  up to the linear equivalence on the divisor U 

(47) "~k + 1 = ~ k  + U, 

where U = P +  + P - 2Q+ = Q_ - Q+, Q_ has the coordinates /a = 0, X =  

= -- (x, A - l y ) - l .  The equivalence P+ + P _  = Q+ + Q , which we use, is 

given by the function f (# ,  ;k) =/z. 

We complete our considerations exhibiting the formulas for 0 in terms of 

0-functions. All necessary facts about 0-functions can be found  in [16], (see 

also [ 17], where the application of  these functions are discussed). 

Let w 1 . . . .  , wg be the basis of  the holomorphic l-forms on r ,  normalized 

by the conditions 

~ oo I = 2~riSlk 

for some canonical basis a 1 . . . . .  ~ ,  131 . . . .  ,3g in H 1 (1-', 7) .  The Jacobian 

variety J(P)  is determined as 

J ( r )  = ¢ g/L 

where the lattice L is generated by the columns of the matrices 

B is the Riemann matrix: 
2~riI and B, 

Bk] = ~k  6o..l 

The classical Riemann theta-function O(z) is determined as the series 

m ~ z g  

Let ~¢ : r -* J(r) be the Abel mapping 
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f 
P 

s l (  P )  t = 6o i 

P, 

for some fixed point  P0 E F. The funct ion f ( P )  = 0 (~¢(P) - ~) for the general 

~" E J (F)  has g zeroes P1 . . . . .  P on F with the proper ty  

~¢(P1 ) + "  "" + ~ I ( P )  = ~" + K, 

where K is the vector of  Riemann constants [ 16]. 

L e t s  consider the function ~0(p) .  It has (2n - 1) poles and the same number  

of  zeroes, f rom which n coincides with A 1 . . . . .  A n.  The remaining zeroes we 

denote as Z 1 . . . . .  Z n  - 1 " 

The ratio ffl ( p ) / ~ O ( p )  has n = g + 1 poles A 1' Z1 . . . . .  Zn  - 1 oil 1 ~ and 

one o f  the zeroes at the point A 0. This property determines this function up 

to  a constant  factor. 

By using the t ransformation law of  O ( z ) , O ( z  + 2,ri m + B n )  = 

= exp ( -  1/2 n B n  r - zn  r )  O(z) one can check that  the following function 

has the same proper ty  

(48) fPo ) O(,.¢~(P) "4- V01 - ~) ~0 a (P)  = exp ~ 2 0 1  O(sit(e) - ~) 

Here ~01  is the meromorphic  l - form with the poles at A 0 and A 1 with the 

residues (+  I) and ( -  1) correspondently and with zero a-periods: V o l  is the 

vector o f  its/3-periods: 

f 
V01=i ~ ~"~01 = ~ ¢ ( A 0 )  - ~ ¢ ( A  1), ~ = ~ ¢ ( z l ) +  . . .  + d ( z ,  _ 1 ) - K .  

d o  

Thus we have the formula for ~k(P) :  

(49) ~kk ( P )  = ( O ( A ( P )  - ~k)  : c 1 cbl ( P )  O ( A ( P )  - V o l  - ~k)  : . . .  

. . .  : c ¢.(P) O(A(P)- Vo. -~k)) 

where 

~i (P)  = exp $20i ' ~'k = ~0 + kU,  ~'0 E J ( P )  

0 

and the constants c l ,  c 2 . . . . . .  c n are determined by the initial data, U is the 



CONFOCAL SURFACES AND INTEGRABLE BILLIARDS ON THE SPHERE... 99 

same as in (47),  V0f = ~¢(A 0 ) - ~ ( A  i) are the  half-periods.  

THEOREM 2. The dynamics in the H-ellipsoidal billiard problem corresponds 

to the shift  (4 7) on the Jacobi variety o f  the hyperelliptic curve (40)  and is given 

in terms o f  O-functions by the formulas (45), (49). • 

4. G E O M E T R I C A L  CONSEQUENCES 

We begin with  the fol lowing theorem,  generalizing a well-known fact  o f  eucli-  

dean geomet ry  [ 1 ]. 

THEOREM 3. All  sides o f  the trajectory in the H(S)-ellipsoidal billiard problem 

in the Lobachevsky space (on the sphere) are tangent to the (n - 1) con focal 

conic sections, which are f i xed  for  a given trajectory. 

Proof. We will consider  only  the  hyperbol ic  case. As fol lows f rom the formulas  

(34)  - (38) the roo ts  of  the funct ion  

~ .  (xk  - 1' Xk ) = 0 

do no t  depend  on k for  and bill iard t ra jec tory  x k. We need that  on ly  in fol lowing 

lemma.  

LEMMA. For given points x and y in ~?n,1 with (x, x )  = (y, y )  = -- 1 the equa- 

tion (au(x, y )  = 0: 

((A - / a / ) -  1 X, y )2  _ ((A - ,u/)- 1 X, X) ((A - / a / ) -  l y ,  y )  = 0 

has (n - 1) real roots gt I . . . . .  gin - 1" The straight line x y  in the Lobachevsky 

space is tangent to the con focal conical sections (7), corresponding to 

O t = / d l , . . . , O / = # n _  1. 

Proof  o f  the lemma. We essential ly repeat  the arguments  o f  Moser and Arno ld  

for  the analogous eucl idean s i tuat ion.  

The funct ion ¢ , ( x ,  y )  is the  discr iminant  o f  the  quadra t ic  equat ion  on t: 

((A - t~I)- I (x + ty),  (x + ty))  = O, 

describing the in tersec t ion  of  the straight line x y  with the confocal  surface 

(13),  o~ = /a. Therefore  ¢u(x, y)  = 0 describes the  conical  sections, which are 

tangent  to the given line xy.  Choose an o r thogona l  basis e 1, e 2 in the plane 

Mxy in N n ' l  : ( e l ,  e2)  = _ 1, (e 2, e 2 ) = 1, (e 1, e 2 ) = 0. The or thogona l  projec- 

t ion of  V = Nn,1 on W which is the  or thogonal  c omp le me n t  o f e  2 : (W, e 2) = 0, 
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transforms the confocal family (13) into the new confocal family in 1¢, which 

is supplied by the induced pseudoeuclidean structure. Indeed, for the dual surfa- 

ces it leads to the restriction on W, which obviously conserves the property 

of the pseudoeuclidean pensils (6). 

Thus one can use the proposition (2) to complete the proof of the lemma 

and of  theorem 3. • 

Example 1. H-elliptical billiard on the Lobachevsky plane (see fig. 4 and 6). 

The picture in the Klein model is very similar to the euclidean one, the only 

difference is in the definition of the confocal ellipses (14). 

COROLLARY 1. (Focusing property of  the H-elliptical billiard). 

Fig. 6 

l:ig 7 
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The trajectories, passing through one o f  the loci F± after the reflection come 

into another focus (see fig. 6). • 

Another consequence generalizes the string construction of  the euclidean 

ellipse, given by Graves (see [1, 10]). 

GRAVES THEOREM. Given an ellipse E and a closed piece o f  string with length 

strictly greater than the length o f  C, the locus o f  a pencil used to pull the string 

taut around C is another ellipse C', confocal with C (see fig. 7). • 

COROLLARY 2. Graves theorem is true also in the Lobachevsky plane as well 

as on the sphere for the corresponding conical sections. In particular, the H- 

ellipse can be determined geometrically as the locus o f  X 

p(X, F_ ) + o(X, F+ ) = const. 

where p is Lobachevsky distance. 

It follows from the calculation of  the first variation of the string's length 
and the reflection property. • 

The three-dimensional euclidean generalization of  Graves construction was 

found by O. Staude [18]. It seems to be possible to prove the analogous theorem 

in the Lobachevsky space. 

Example 2. S-elliptical billiard on the sphere S 2 C IR 3 (see also [10], p. 312). 

I 

C, 

Fig. 8 
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The cone 

4 + + 4 0 
a 0 a 1 a 2 

(a 0 > a 1 > 0 > a~) intersects with the unit sphere S 2 by the closed curves C 1 

and C 2, dividing S" into three domains I, II and III. After the projectivization 

S 2 ~ F,P 2 we have two domains I and II, homeomorph ic  to the disc and the 

M6bius sheet correspondently.  The billiard dynamics in these two domains 

coincide on their c o m m o n  boundary  C (see fig. 8). It is interesting to note that 

the domain II is concave everywhere, in the zero curvature situation this pro- 

per ty  leads to  the stochastic behaviour, as the famous example o f  Ya. G. Sinai 

[ 19] shows. 

APPENDIX A 

The geodesic flow on the H ellipsoid in Lobachevsky space 

The geodesic flow on the H-ellipsoid can be considered as the continuous 

limit o f  the corresponding billiard system. Therefore its integrability in some 

sense follows from our results. To make it more  convincing we present here the 

Lax representation with the spectral parameter,  which is crucial for  the complete 

integrability. 

Let x(s)  be the geodesic on the H-ellipsoid, determined by the equation 

2 . . . + X n  2 (l)  ---x°: +--x~ + =0 ,  

a o a 1 a n 

x E ~n ,  1, (x, x)  = -- 1 (see § 1 ). Then x(s)  satisfies the equation 

(2) J~ = v A -  i x  + lax, 

A = diag (a o, a 1 . . . . .  an), ia = l, v = v(x)  is determined from the conditions 

(x,A-lx)=O, ( x , x ) = - - l :  ( . ~ , A - l x )  = 

= O ~ O i ,  A -  i x )  + ( x , A - a 2 ) = O  

and therefore 

(3) v = --  
( A -  ix ,  A -  i x )  

THEOREM. The equation (2), (3)  for  the geodesics on the H-ellipsoid is equivalent 

to the Lax representation with the spectral parameter X 
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(4) £ = [L, PI 

w h e r e  L = A + X x  ^ 5c P = X v A -  i x  ® ( A -  ix)*.  

Recall (see § 1) that forx,  y E 1 t  n ' l ,  x ^ y = x ® y *  - y ® x * .  

The theorem can be proved by a simple calculation. 

Now one can find the explicit formulas in terms of theta-functions of  the 

hyperelliptic curve P: 

det(L(X) - # / )  = 0 

in the same way as it was done for the billiard system in § 3. The corresponding 

formulas for the geodesics on the euclidean ellipsoid in R 3 were found by K. 

Weierstrass [20], for higher dimension it was done by H. Kn6rrer [21] (see also 

[221). 

APPENDIX B 

Harmonic oscillator in the Lobachevsky space and f'mite-gap Schr6dinger operators 

We will consider the hyperbolic version of C. Neumann system, which can 

be viewed as a natural analogue of the anisotropic harmonic oscillator in the 

Lobachevsky space. 

We use the notations of § 1. Let x be the points of  one sheet of  the hyper- 
boloid in ~ n ,  1 

2 = - - 1 .  (1) ~x ,x~=-X2o + x~ + . . .  + x n 

The hyperbolic version of C. Neumann system [6] corresponds to the Hamilto- 

nian function 

1 1 
(2) H = - -  (p,  p )  + - -  t A x ,  x ), 

2 2 

A = diag(a  0 . . . . . .  a n ) , a  0 < a  1 < . .  < a  n . The p o t e n t i a l U ( x ) =  1 / 2 ( A x ,  x )  

in the coordinates x 1 . . . . .  XnhaS the form 

1 
2 + 1 ) + a l x  ~ + . . . + a n X 2 n  ) (3) U = - -  ( - a o ( X  ~ + . . . + x n = 

2 

1 
= 7 [(al - - a O ) x ~  + ' ' "  + (an - - a O ) x 2  - - a ° ] '  

which make evident the analogy with the usual harmonic oscillator. 

The equations of the motion are 
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(4) 3i + A x  = Lx 

with the Lagrange multiplyer 

X = <Ax, x )  - (x, ~c> 

In order to integrate this system one can use the Lax representation, which 

is a slight modification of that found by J. Moser [7]. 

PROPOSITION, The sys tem (4)  has the Lax representation with the spectral para- 

meter  la 

L = [L, p] 

with L = A + laX A ~ + la2x ®x*  p = iax ® x *  

Another possibility is supplied by the connection of  this problem with the 

spectral theory of the Schrbdinger operator 

d 2 
(5) . ~ = - -  - -  + u(t). 

dt 2 

discovered by J. Moser and E. Trubowitz [2, 8]. 

The finite-gap theory of this operator which began with the pioneering paper 

of S,P. Novikov [23] can be found in [14]. 

Let u(t)  be the n-gap operator .~  with the spectrum 

[Eo, E 1 ] tO [E2, E 3 ] U . . .  td [E2n , oo ]. 

The Bloch eigenfunction 

~qJ =Ef 

is meromorphic on the affine part of the hyperelliptic curve F: 

2n 
y2 = ~ (E - Ei) = R ( E )  

i =  0 

and has n poles. Its projections on the line E - ~1 . . . . .  ~/n belong to the gaps: 

E2i_ 1 < ' l t  < E2t. 
Leta  0 < . . .  < a  n be any (n + 1) points from the s e r e  0 . . . . .  E2n. 

LEMMA. (see [9]). The funct ions  t~(a a, t )sat is fy  the ident i ty  

B 

(6) E c ~2(a w t ) = l  
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with 

(7) C = 

?1 

U ( a  - 7j) 
j--1 

(8) 

] - ]  (a,~ - a a )  

The proof  follows from the formula for ~k2(E t) in the points E = E/: 

proved in [ 14] 

n E i - z /(t))  
¢2(E  r t ) =  U 

j=l (e~ - , r )  

Suppose we have the inequalities 

(9) c o > 0 ,  c t < O  ( i = l  . . . . .  n). 

Then the formulas 

(10) Xo(t) = x/"+c o ~(a o, t) 

x i ( t )=  ~ (a i , t ) ,  i = l  . . . . .  n 

determine the solution of the system (4). Indeed, 

,~x  = - -  37 + u(t) x = Ax  

and (x, x}~- - -  1 from (7) and (10). 

One can check that the inequalities (9) are equivalent to the following choice 

of  a o . . . . .  an, which we will call admissible: a 0 = E 0, a 1 = E 1 and between 
a i and ai+ ] ((i/> 1 ) lies exactly one gap (see fig. 9 (H)) 

(H) 

(s) 

Eo El E2 E3 F-4 Es E2n--:Z E~,._ 1 E2. 

% a2 ~ ' % a3 "~ 't an,# ao at 

EO El  E2 E$ F.~ I=" s • • .E2n--2 F2n-- I  E2n 

% / '  % / '  ~ / ,  ( 
ao a I a :  an ~ 1  an 

Fig. 9 
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For  the compar ison  we show also in fig. 9 (S) the choice of  ai, corresponding 

to the usual C. Neumann  system (see [22]). 

THEOREM. Let  ~(E, t) be the Bloch eigenfunction o f  the n-gap Schrddinger 

operator .~  , let a o . . . . .  a n be an admissible subset o f  the edges o f  its spectrum 

E o . . . . .  E2n. Then the formulas (10), (7) determine the general solution o f  the 

system (4), describing the harmonic oscillations in the Lobachevsky space. • 

This theorem combined  with the results of  [ 14] leads to the following formulas 

for  the solutions: 

0 ( t U + f )  O(D 
(11) x ( t ) = x  (0) 

O(tU + ~) Oa(~) 

Here 0 (z) are theta-funct ions on the J (P)  with the characteristics correspon- 

ding to the second order points a m (see [16]), U is the vector  of  b-period of  the 

normal ized abelian differential ~2 with the pole o f  the second order at infinity 

(see [14, 17]) 

For  the sys tem on the s p h e r e s  n for  n - -  2 such formulas were found by 

C Neumann  [6] for other  n it was done by the author  in [22] (see also [17]). 
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